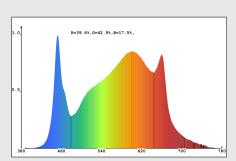

Natural sunlight is the cheapest source available, but for horticulture it is not always attainable in sufficient quantities. Therefore, the use of artificial light has become very common in order to increase production and quality.

All plants, including those flowering, fruiting, and vegetable plants, are strongly influenced by the particular spectrum of light they receive. Farmers have relied on sunlight for years to deliver the perfect recipe. However today's lighting technology can provide what plants need most without help from mother nature.

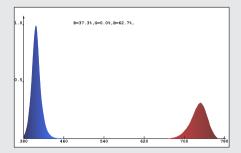
Before, electric light from HID sources such as metal halide and high pressure sodium plays a significant role in the horticultural industry. It enables growers to expose plants to longer hours of light per day in order to influence the growth cycle. Farmers and gardeners using horticulture Lighting as a supplement to sunlight in greenhouses are less reliant on unpredictable factors such as sunlight availability and weather patterns. Electric lighting technology can be used as the sole source of light within grow facilities, however the HID sources commonly used have been electrically inefficient and spectrally insufficient.

Now LED lighting can significantly increase crop production efficiency through lighting control. LED grow lighting systems are well-suited to provide the most appropriate light for each phase of growth and type of plant, from seedling to flowering to fruiting. LED lighting provides optimal levels of Photosynthetically Active Radiation (PAR)-the photons that promote growth and yield without wasting energy to produce photons not efficiently used by the plant. The optimum spectrum for plants includes wavelengths of light in the blue and red region of the spectrum.


Light is essential for plant growth

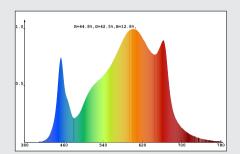
When using light quality as a tool for controlling plant growth, it is important to establish production requirements, and use light accordingly to achieve specific growth goals. In general, red light will increase stem elongation, while blue light promotes plant compactness and root growth, and is important for plant morphology, photosynthesis, and overall plant health.

We recommend that growers begin by using our LED grow light with standard spectrum settings (Type B). Growers can then adjust spectral ratios and test accordingly to optimize your grow for desired varieties and specific characteristics.



Type B: 3000K+5000K+660nm Full spectrum with enhanced blue

Application


Greenhouse

Type D: 730nm+400nm Enhanced far red and UV light

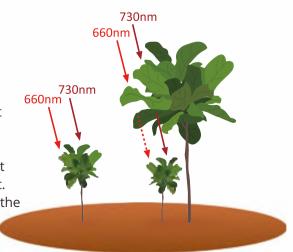
Application

For flowering stage

Type C: 3000K+5000K+660nm Full spectrum with balanced blue

Application

Indoor grow room


A typical application example for the use of 730nm:

The shade escape reaction

One of the most obvious influence of far red light on a plant is the shade escape reaction.

Illumination with 660nm: If the plant is illuminated mainly with 660nm it feels like illuminated in the direct sun and grows normally.

Illumination with 730nm: If the plant is illuminated mainly with 730nm, it feels like growing in the shadow of another plant that shades the sun light. Therefore the plant is reacting with an increased length growth to escape the shadow. This leads to taller plants but not necessarily to more bio mass.

Control Your Growing Season

More Light

Adds more daytime light, boosting existing light levels and increasing growth and yield.

Longer Light

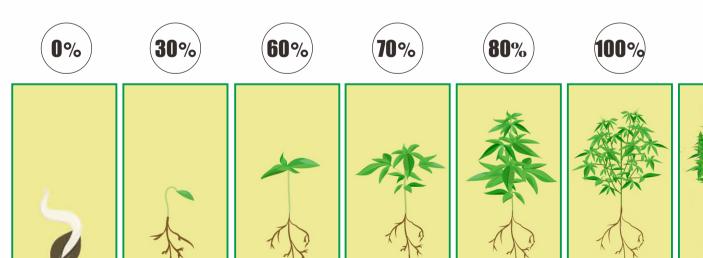
Extends the growth cycle. Switch on at dusk for non-daylight illumination. Utilize all winter long.

Controlled Light

Substitute as a complete lighting solution for indoor grow rooms and biological research facilities.

SEED PLANTING

GERMINATION


SPROUT

- Haming function
- Temperature Sensor detection
- Mumidity Sensor detection
- Bluetooth Communication
- App smart control

VEGETATION

FLOWERING

HARVEST

SEEDING

Lighting Requirements for Cannabis

	Propagation & Cuttings 14 Days	Vegetative Growth 21+ Days Depending on strategy	Veg-to-Flower Transition 3-7 Days	Flowering 8-10 Weeks Including transition and depending on cultivar	Stock Plants (mothers) Slow Growth	Stock Plants (mothers) Rapid Growth
Avg. Light Intensity Measured in µmol m ⁻² s ⁻¹	150-200	200 Increasing gradually to 450-550 over 21 days	450-550 Increasing to 700-800	700 - 800	350-450	500-600
Photoperiod Hours of light	18	18	12	12	18	18
Ambient Room Temp. (Day)	70-72 °F 21-23 °C	80-85 °F 26-29 °C	80-85 °F 26-29 °C	80-85 °F 26-29 °C	70-75 °F 21-24 °C	80-85 °F 26-29 °C
Ambient Room Temp. (Night)	1 611-711 °F 1 711-75 °F		70-75 °F 21-24 °C	70-75 °F 21-24 °C	65-70 °F 18-21 °C	70-75 °F 21-24 °C
Ambient Relative Humidity (Day)	100% until root- ed, within 4-7 days, then vent to 80%	75-80% (early) 55-67% (mid/ late veg)	55-67%	55-67% (early) 50-62% (mid/ late flower)	50-60%	55-67%
Ambient Relative Humidity (Night)	Same as daytime, see "Propagation" section below for more information	75-80% (early) 55-67% (mid/ late veg)	55-67%	55-67% (early) 42-57% (mid/ late flower)	50-60%	55-67%
Vapor Pressure Deficit (Day) (Measured in kPA)	0	0.67-1.00 (early) 1.11-1.80 (late)	1.11-1.80	1.11-1.80 (early) 1.28-2.00 (late)	1.00-1.49	1.11-1.80
Vapor Pressure Deficit (Night) (Measured in kPA)	cit (Night) 0 0.33-0.73 (day)		0.82-1.34	0.82-1.34 (early) 1.07-1.73 (late)	0.83-1.24	0.82-1.34
CO ₂ Enrichment (Measured in ppm)	-	1200-1500	1200-1500	1200-1500	0	1200-1500

Cannabis is an obligate short-day plant, which means it flowers when the dark period is shifted to a critical length. This translates into a recommended 12 hour photoperiod when lighting cannabis for flowering and 18 hours a day in the vegetative phase

What are typical µmol/s.m² values for horticulture lighting? What light level for what type of crop?

Plant	Min (μmol/s.m²)	Max (μmol/s.m²)	Typical (µmol/s.m²)	
Tomato	170	350	230	
Pepper	120	300	180	
Cucumber	120	350	230	
Cannabis Vegetative growth	280	550	350	
Cannabis Flowering	650	1,000	850	

What light level for what potted plant?

Plant	Min (μmol/s.m²)	Max (μmol/s.m²)	Typical (μmol/s.m²)	
Orchid / Phalaenopsis	80	180	110	
Dendrobium	130	350	195	
Bromelia	40	120	90	
Anthurium	60	130	90	
Kalanchoë	60	120	90	
Potted chrysanthemum	40	80	50	
Potted rose	40	120	50	
Geranium	40	90	50	

What light level for what cut flower?

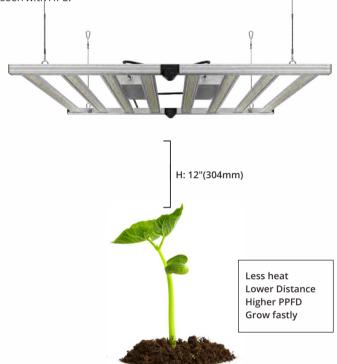
Plant	Min (μmol/s.m²)	Max (μmol/s.m²)	Typical (μmol/s.m²)	
Chrysanthemum	105	220	140	
Rose	170	350	220	
Lily	80	130	90	
Lisianthus	170	350	230	
Alstroemeria	60	160	120	
Anthurium / Orchid - cut	80	160	120	
Freesia	70	140	90	
Gerbera	80	120	90	
Tulip	25	90	60	

Different regions of the wavelength in the illumination spectrum have different effects on the plants

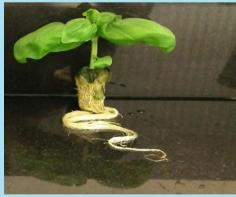
Wavelength range [nm]	Photosynthesis	Further Effects	Further Effects	Further Effects
200 – 280		Harmful		
280 – 315		Harmful		
315 – 380				
380 – 400	Yes			
400 – 520	Yes	Vegetative growth		
520 – 610	Some	Vegetative growth		
610 – 720	Yes	Vegetative growth	Flowering	Budding
720 – 1000		Germination	Leaf building and growth	Flowering
> 1000		Converted to heat		

Difference Between LED and HPS

HPS lights were once the most efficient, longest-lasting solution. Now LED is the newest generation of lighting technology in the horticultural field. It achieves the same horticultural lightins requirements with much higher efficiency and additional functionality. LEDs have advanced to produce 50% less electricity, release much less heat, are more stable over time, and are not hazardous to the environment.


HPS Lighting

In high pressure sodium (HPS) light cultivations, flower development may be related to the temperature of the canopy, as well as other factors. We generally see top-heavy flower development within the canopy usually to a depth of 24-36" ately boosting yields and savingelectricity.



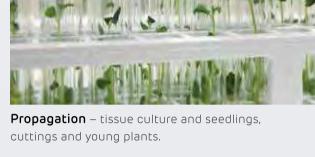
LED Lighting

With our LED fixtures, this floral morphology becomes less distinctly "top heavy", as flowers develop more evenly across the vertical grop profile, creating the opportunity for greater total yield. Flowers grown under the LEDs see less variance in plant structure with up to 3feet of consistent development compared to 24-36" seen with HPS.

HPS LIGHT

Testing Analysis:

Leaves and Roots Plant: Basil Study Sector: Leafy Green Vegetables Growth Days at Testing: 15


LED GROW LIGHT

Designed to Meet the Needs of

MANY APPLICATIONS

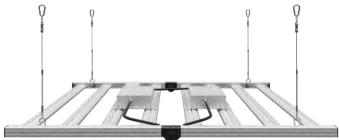
Urban Farming – leafy vegetables and soft fruits in vertical arrangements.

Floriculture – cut flowers, potted plants, bedding plants and perennials.

AgroTech – plant product for use in pharma, technology and experimental research facilities.

Olericulture – high wire vegetables, leafy vegetables, herbs and fruits.

Indoor Hobby Gardening – horticulture in residential settings.



Hydroculture – soilless medium, or aquatic-based environments.

Green Walls – system to improve aesthetics and air quality in indoor environments.

Efficacy: 2.7umol/j
Power Factor: >0.95

Housing: Pure Aluminum

Spectrum: Full spectrum

Thermal Conductivity: 226 W/m·K

THD: <15 Driver: Sosen

CRI: Ra>90

Features

Driver Efficiency: >93%

Protection: OTP, OCP, OVP, SCP

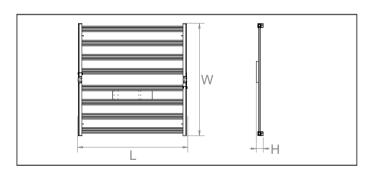
Surge Protection: 10KV

Waterproof: IP54 Impact Test: IK08

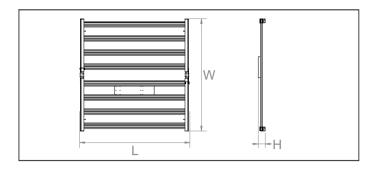
Electrical: 100-277V, 50/60Hz
Operating Temperature: -40~50 °C

TM21: L90B10>54,000H

Lifetime: 50,000H



Functions


1-10V Knob Dim

Optical options:

Model	Watt	Voltage	Effi.	PPF	IP	Dimension	
NET-640FE	640W	100~277V	2.7 umol/s/w	1728 umol/s	IP54	1110*1098*80	_
NET-720FE	720W	100~277V	2.7 umol/s/w	1944 umol/s	IP54	1110*1098*80	
NET-960FE	960W	100~277V	2.7 umol/s/w	2592 umol/s	IP54	1110*1098*80	

Packing

Model	L*W*H (mm)	Outer Carton(mm)		QTY / Outer CTN	NW (kg)	GW (kg)	
NET-640FE	1110*1098*80	1185	1190	155	1	9.50	11.30
NET-720FE	1110*1098*80	1185	1190	155	1	9.50	11.30
NET-960FE	1110*1098*80	1185	1190	155	1	11.00	12.80